

DNA Test Report

Test Date: July 14th, 2019

embk.me/magneto2

BREED ANCESTRY

Poodle (Small) : 50.0%
Bernese Mountain Dog : 27.8%
Poodle (Standard) : 22.2%

GENETIC STATS

Predicted adult weight: **34 lbs** Genetic age: n/a (Date of birth unknown)

TEST DETAILS

Kit number: EM-5306940 Swab number: 31001811295194

BREED ANCESTRY BY CHROMOSOME

Our advanced test identifies from where Magneto inherited every part of the chromosome pairs in his genome.

	Breed colors:						
	Poo	dle (Small)	Bernese M	Mountain Dog	Poodle (St	andard)	
1	_	2		3		4	
5		6		7		8	
9		10		11		12	
13		14		15		16	
17		18		19		20	
21		22		23		24	
25		26		27		28	
29		30		31		32	
33	_	34		35		36	-
37	-	38					

DNA Test Report

Alternative Names Toy Poodle, Miniature Poodle

Fun Fact

Although Toy Poodles are the most popular dog breed in Japan, Poodles as a group are the eight most popular breed in the US, with miniature poodles being the most common variety. Test Date: July 14th, 2019

embk.me/magneto2

POODLE (SMALL)

Miniature and toy poodles are varieties of the poodle breed which originated in Germany in the 15th century. Unlike the larger standard poodle (>15 inches tall), these small poodles were not developed for hunting---except for truffles!---and were generally used as lap dogs and companions. Small poodles are frequently used to create designer dogs like Schnoodles and Maltipoos with low-shedding, hypoallergenic coats. All poodles are highly intelligent and energetic, and need daily exercise and stimulation. They are overall healthy dogs, although heritable eye disease, epilepsy and allergies are relatively common, and toy poodles also have a heightened risk of accidents/trauma due to their small size.

DNA Test Report

Fun Fact Berners can haul up to 1,000 pounds -10 times their weight! Test Date: July 14th, 2019

Rembark

embk.me/magneto2

BERNESE MOUNTAIN DOG

The Bernese Mountain Dog, commonly referred to as a 'Berner', is a versatile working dog that is both visually pleasing and a loyal companion. The Bernese Mountain Dog was bred to herd cattle, pull carts and be a watchdog in the Swiss farmlands. The ancient 'Molosser' breed is considered the main contributor to Mastiff-type dogs, which include the Berner. It is likely that the Molosser bred with farm dogs from the Swiss Alps in the first century B.C., developing a number of Swiss Sennenhund ("mountain dog") breeds, including the Berner Sennenhund. It is thought that the Berner continued working on these Swiss farmlands for over 2,000 years, before their primary purpose switched from herding cattle to appearing as a show dog in the early 20th century. They were first classified as the Bernese Mountain Dog at this time by the Swiss Kennel Club. Following World War I, in which the breed nearly became extinct, Berners were exported to America before being accepted by the AKC as an official breed in 1937. Breed development faltered somewhat during World War II before Berners became an established and popular breed in the mid to late 20th century. This easygoing breed likes to be around their owners, where their calm and intelligent nature makes them a beloved family dog. Berners exhibit their working dog instincts in their willingness to learn and relative ease to be trained. Their heritage also often results in being protective and sometimes shy towards new people and dogs. Early socialization training allows the Bernese Mountain Dog to learn to overcome initial caution around new things. This breed is a large dog, weighing around 100 pounds, and likes to keep busy, so it is important training is conducted while young and manageable. While they are well-tempered dogs, they are slow to mature and often exhibit puppy behavior for a number of years before reaching full maturity. Due to their beautiful and thick double coat, Berners tend to shed generously, requiring frequent brushing to keep under control. Unfortunately, owing to their size and limited gene pool, Bernese Mountain Dogs are prone to health problems and have a life expectancy of between 6-8 years. Nonetheless, this lovable dog

DNA Test Report

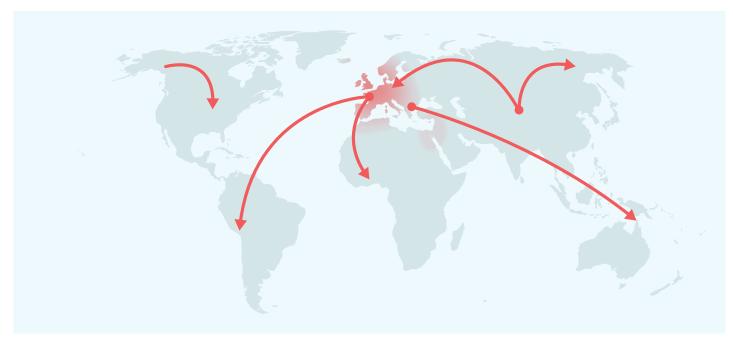
Fun Fact

From 1989 to 1991, John Suter raced a team of Poodles in the Iditarod. Although his teams placed in the back half of the pack, he managed to win \$2,000 in prize money before retiring his poodle team. The Iditarod has since changed its rules to specify that only northern dog breeds can compete. Test Date: July 14th, 2019

embk.me/magneto2

POODLE (STANDARD)

The Standard Poodle is a popular, water-loving dog used for centuries as a bird dog and popular pet. Poodles were established in Germany by the 15th century. Oddly enough, they are the national dog breed of France, and they were the most popular breed of dog in the United States throughout the 1960s and 70s. They're still quite popular today, owing to their intelligence, trainability, and non-shedding coats. Although well-known for their fancy fur, they're one of the most intelligent breeds of dog and require a lot of exercise and stimulation.



Test Date: July 14th, 2019

embk.me/magneto2

MATERNAL LINE

Through Magneto's mitochondrial DNA we can trace his mother's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1e

This female lineage likely stems from some of the original Central Asian wolves that were domesticated into modern dogs starting about 15,000 years ago. It seemed to be a fairly rare dog line for most of dog history until the past 300 years, when the lineage seemed to "explode" out and spread quickly. What really separates this group from the pack is its presence in Alaskan village dogs and Samoyeds. It is possible that this was an indigenous lineage brought to the Americas from Siberia when people were first starting to make that trip themselves! We see this lineage pop up in overwhelming numbers of Irish Wolfhounds, and it also occurs frequently in popular large breeds like Bernese Mountain Dogs, Saint Bernards and Great Danes. Shetland Sheepdogs are also common members of this maternal line, and we see it a lot in Boxers, too. Though it may be all mixed up with European dogs thanks to recent breeding events, its origins in the Americas makes it a very exciting lineage for sure!

HAPLOTYPE: A228

Part of the large A1e haplogroup, we have spotted this haplotype in village dogs in the Democratic Republic of the Congo and in the Dominican Republic. Among breeds, we see it frequently in big dogs like Saint Bernards, Leonbergers, and Great Danes. However, we also see it in small breeds including wire Fox Terriers and Rat Terriers. That's a pretty wide size range!

Fembark

Test Date: July 14th, 2019

embk.me/magneto2

PATERNAL LINE

Through Magneto's Y chromosome we can trace his father's ancestry back to where dogs and people first became friends. This map helps you visualize the routes that his ancestors took to your home. Their story is described below the map.

HAPLOGROUP: A1b

For most of dog history, this haplogroup was probably quite rare. However, a couple hundred years ago it seems to have found its way into a prized male guard dog in Europe who had many offspring, including the ancestors of many European guard breeds such as Doberman Pinchers, St. Bernards, and Great Danes. Despite being rare, many of the most imposing dogs on Earth have it; strangely, so do many Pomeranians! Perhaps this explains why some Poms are so tough, acting like they're ten times their actual size! This lineage is most commonly found in working dogs, in particular guard dogs. With origins in Europe, it spread widely across other regions as Europeans took their dogs across the world.

HAPLOTYPE: Ha.7

Part of the A1b haplogroup, this haplotype is found in village dogs from Lebanon and Indonesia. Among breeds, it is also found in Miniature Schnauzer and Toy Poodle.

Test Date: July 14th, 2019

embk.me/magneto2

RESULT

TRAITS: COAT COLOR

TRAIT

E Locus (MC1R)

The E Locus determines if and where a dog can produce dark (black or brown) hair. Dogs with two copies of the recessive **e** allele do not produce dark hairs at all, and will be "red" over their entire body. The shade of red, which can range from a deep copper to yellow/gold to cream, is dependent on other genetic factors including the Intensity loci. In addition to determining if a dog can develop dark hairs at all, the E Locus can give a dog a black "mask" or "widow's peak," unless the dog has overriding coat color genetic factors. Dogs with one or two copies of the **Em** allele usually have a melanistic mask (dark facial hair as commonly seen in the German Shepherd and Pug). Dogs with no copies of **Em** but one or two copies of the **Eg** allele usually have a melanistic "widow's peak" (dark forehead hair as commonly seen in the Afghan Hound and Borzoi, where it is called either "grizzle" or "domino").

No dark mask or grizzle (EE)

K Locus (CBD103)

The K Locus K^B allele "overrides" the A Locus, meaning that it prevents the A Locus genotype from affecting coat color. For this reason, the K^B allele is referred to as the "dominant black" allele. As a result, dogs with at least one K^B allele will usually have solid black or brown coats (or red/cream coats if they are ee at the E Locus) regardless of their genotype at the A Locus, although several other genes could impact the dog's coat and cause other patterns, such as white spotting. Dogs with the $k^{y}k^{y}$ genotype will show a coat color pattern based on the genotype they have at the A Locus. Dogs who test as $K^{B}k^{y}$ may be brindle rather than black or brown.

More likely to have a patterned haircoat (k^yk^y)

embk.me/magneto2

TRAITS: COAT COLOR (CONTINUED)

TRAIT

Intensity Loci LINKAGE

Areas of a dog's coat where dark (black or brown) pigment is not expressed either contain red/yellow pigment, or no pigment at all. Five locations across five chromosomes explain approximately 70% of red pigmentation "intensity" variation across all dogs. Dogs with a result of **Intense Red Pigmentation** will likely have deep red hair like an Irish Setter or "apricot" hair like some Poodles, dogs with a result of **Intermediate Red Pigmentation** will likely have tan or yellow hair like a Soft-Coated Wheaten Terrier, and dogs with **Dilute Red Pigmentation** will likely have cream or white hair like a Samoyed. Because the mutations we test may not directly cause differences in red pigmentation intensity, we consider this to be a linkage test.

Any light hair likely apricot or red (Intense Red Pigmentation)

A Locus (ASIP)

The A Locus controls switching between black and red pigment in hair cells, but it will only be expressed in dogs that are not **ee** at the E Locus and are **k**^y**k**^y at the K Locus. Sable (also called "Fawn") dogs have a mostly or entirely red coat with some interspersed black hairs. Agouti (also called "Wolf Sable") dogs have red hairs with black tips, mostly on their head and back. Black and tan dogs are mostly black or brown with lighter patches on their cheeks, eyebrows, chest, and legs. Recessive black dogs have solid-colored black or brown coats.

Black/Brown and tan coat color pattern (a^ta^t)

D Locus (MLPH)

The D locus result that we report is determined by two different genetic variants that can work together to cause diluted pigmentation. These are the common **d** allele, also known as "**d1**", and a less common allele known as "**d2**". Dogs with two **d** alleles, regardless of which variant, will have all black pigment lightened ("diluted") to gray, or brown pigment lightened to lighter brown in their hair, skin, and sometimes eyes. There are many breed-specific names for these dilute colors, such as "blue", "charcoal", "fawn", "silver", and "Isabella". Note that in certain breeds, dilute dogs have a higher incidence of Color Dilution Alopecia. Dogs with one **d** allele will not be dilute, but can pass the **d** allele on to their puppies. To view your dog's **d1** and **d2** test results, click the "SEE DETAILS" link in the upper right hand corner of the "Base Coat Color" section of the Traits page, and then click the "VIEW SUBLOCUS RESULTS" link at the bottom of the page.

Dark areas of hair and skin are not lightened (DD)

RESULT

embk.me/magneto2

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

B Locus (TYRP1)

Dogs with two copies of the **b** allele produce brown pigment instead of black in both their hair and skin. Dogs with one copy of the **b** allele will produce black pigment, but can pass the **b** allele on to their puppies. E Locus **ee** dogs that carry two **b** alleles will have red or cream coats, but have brown noses, eye rims, and footpads (sometimes referred to as "Dudley Nose" in Labrador Retrievers). "Liver" or "chocolate" is the preferred color term for brown in most breeds; in the Doberman Pinscher it is referred to as "red".

Black or gray hair and skin (Bb)

Saddle Tan (RALY)

The "Saddle Tan" pattern causes the black hairs to recede into a "saddle" shape on the back, leaving a tan face, legs, and belly, as a dog ages. The Saddle Tan pattern is characteristic of breeds like the Corgi, Beagle, and German Shepherd. Dogs that have the **II** genotype at this locus are more likely to be mostly black with tan points on the eyebrows, muzzle, and legs as commonly seen in the Doberman Pinscher and the Rottweiler. This gene modifies the A Locus **a**^t allele, so dogs that do not express **a**^t are not influenced by this gene.

Not saddle tan patterned (II)

S Locus (MITF)

The S Locus determines white spotting and pigment distribution. MITF controls where pigment is produced, and an insertion in the MITF gene causes a loss of pigment in the coat and skin, resulting in white hair and/or pink skin. Dogs with two copies of this variant will likely have breed-dependent white patterning, with a nearly white, parti, or piebald coat. Dogs with one copy of this variant will have more limited white spotting and may be considered flash, parti or piebald. This MITF variant does not explain all white spotting patterns in dogs and other variants are currently being researched. Some dogs may have small amounts of white on the paws, chest, face, or tail regardless of their S Locus genotype.

Likely solid colored, but may have small amounts of white (Ssp)

embk.me/magneto2

RESULT

TRAITS: COAT COLOR (CONTINUED)

TRAIT

M Locus (PMEL)

Merle coat patterning is common to several dog breeds including the Australian Shepherd, Catahoula Leopard Dog, and Shetland Sheepdog, among many others. Merle arises from an unstable SINE insertion (which we term the "M*" allele) that disrupts activity of the pigmentary gene PMEL, leading to mottled or patchy coat color. Dogs with an **M*m** result are likely to be phenotypically merle or could be "phantom" merle, that is, they have a merle allele that does not affect coat color. Dogs with an **M*M*** result are likely to be phenotypically merle or double merle. Dogs with an **mm** result have no merle alleles and are unlikely to have a merle coat pattern.

Note that Embark does not currently distinguish between the recently described cryptic, atypical, atypical+, classic, and harlequin merle alleles. Our merle test only detects the presence, but not the length of the SINE insertion. We do not recommend making breeding decisions on this result alone. Please pursue further testing for allelic distinction prior to breeding decisions.

H Locus (Harlequin)

This pattern is recognized in Great Danes and causes dogs to have a white coat with patches of darkerNo harlequin allelespigment. A dog with an Hh result will be harlequin if they are also M*m or M*M* at the M Locus and are not(hh)ee at the E locus. Dogs with a result of hh will not be harlequin. This trait is thought to be homozygous(hh)lethal; a living dog with an HH genotype has never been found.(hh)

No merle alleles (mm)

embk.me/magneto2

RESULT

TRAITS: OTHER COAT TRAITS

Furnishings (RSPO2) LINKAGE

Dogs with one or two copies of the F allele have "furnishings": the mustache, beard, and eyebrowsLikely furnishedcharacteristic of breeds like the Schnauzer, Scottish Terrier, and Wire Haired Dachshund. A dog with two I(mustache, beard,alleles will not have furnishings, which is sometimes called an "improper coat" in breeds whereand/or eyebrows) (FI)furnishings are part of the breed standard. The mutation is a genetic insertion which we measureindirectly using a linkage test highly correlated with the insertion.

Coat Length (FGF5)

The FGF5 gene is known to affect hair length in many different species, including cats, dogs, mice, and humans. In dogs, the **T** allele confers a long, silky haircoat as observed in the Yorkshire Terrier and the Long Haired Whippet. The ancestral **G** allele causes a shorter coat as seen in the Boxer or the American Staffordshire Terrier. In certain breeds (such as Corgi), the long haircoat is described as "fluff."

Likely long coat (TT)

Shedding (MC5R)

Dogs with at least one copy of the ancestral C allele, like many Labradors and German Shepherd Dogs, areLikely light sheddingheavy or seasonal shedders, while those with two copies of the T allele, including many Boxers, Shih Tzus(CT)and Chihuahuas, tend to be lighter shedders. Dogs with furnished/wire-haired coats caused by RSP02(the furnishings gene) tend to be low shedders regardless of their genotype at this gene.

Hairlessness (FOXI3) LINKAGE

A duplication in the FOXI3 gene causes hairlessness over most of the body as well as changes in tooth shape and number. This mutation occurs in Peruvian Inca Orchid, Xoloitzcuintli (Mexican Hairless), and Chinese Crested (other hairless breeds have different mutations). Dogs with the **NDup** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat. The **DupDup** genotype has never been observed, suggesting that dogs with that genotype cannot survive to birth. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Very unlikely to be hairless (NN)

Hairlessness (SGK3)

Hairlessness in the American Hairless Terrier arises from a mutation in the SGK3 gene. Dogs with the **ND** genotype are likely to be hairless while dogs with the **NN** genotype are likely to have a normal coat.

Very unlikely to be hairless (NN)

RESULT

TRAITS: OTHER COAT TRAITS (CONTINUED)

TRAIT

Oculocutaneous Albinism Type 2 (SLC45A2) LINKAGE

Dogs with two copies **DD** of this deletion in the SLC45A2 gene have oculocutaneous albinism (OCA), also known as Doberman Z Factor Albinism, a recessive condition characterized by severely reduced or absent pigment in the eyes, skin, and hair. Affected dogs sometimes suffer from vision problems due to lack of eye pigment (which helps direct and absorb ambient light) and are prone to sunburn. Dogs with a single copy of the deletion **ND** will not be affected but can pass the mutation on to their offspring. This particular mutation can be traced back to a single white Doberman Pinscher born in 1976, and it has only been observed in dogs descended from this individual. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Coat Texture (KRT71)

Dogs with a long coat and at least one copy of the **T** allele have a wavy or curly coat characteristic of Poodles and Bichon Frises. Dogs with two copies of the ancestral **C** allele are likely to have a straight coat, but there are other factors that can cause a curly coat, for example if they at least one **F** allele for the Furnishings (RSPO2) gene then they are likely to have a curly coat. Dogs with short coats may carry one or two copies of the **T** allele but still have straight coats.

embk.me/magneto2

TRAITS: OTHER BODY FEATURES

TRAIT

Muzzle Length (BMP3)

Dogs in medium-length muzzle (mesocephalic) breeds like Staffordshire Terriers and Labradors, and long muzzle (dolichocephalic) breeds like Whippet and Collie have one, or more commonly two, copies of the ancestral **C** allele. Dogs in many short-length muzzle (brachycephalic) breeds such as the English Bulldog, Pug, and Pekingese have two copies of the derived **A** allele. At least five different genes affect muzzle length in dogs, with BMP3 being the only one with a known causal mutation. For example, the skull shape of some breeds, including the dolichocephalic Scottish Terrier or the brachycephalic Japanese Chin, appear to be caused by other genes. Thus, dogs may have short or long muzzles due to other genetic factors that are not yet known to science.

Likely medium or long muzzle (CC)

Tail Length (T)

Whereas most dogs have two **C** alleles and a long tail, dogs with one **G** allele are likely to have a bobtail, which is an unusually short or absent tail. This mutation causes natural bobtail in many breeds including the Pembroke Welsh Corgi, the Australian Shepherd, and the Brittany Spaniel. Dogs with **GG** genotypes have not been observed, suggesting that dogs with the **GG** genotype do not survive to birth. Please note that this mutation does not explain every natural bobtail! While certain lineages of Boston Terrier, English Bulldog, Rottweiler, Miniature Schnauzer, Cavalier King Charles Spaniel, and Parson Russell Terrier, and Dobermans are born with a natural bobtail, these breeds do not have this mutation. This suggests that other unknown genetic mutations can also lead to a natural bobtail.

Hind Dewclaws (LMBR1)

Common in certain breeds such as the Saint Bernard, hind dewclaws are extra, nonfunctional digits located midway between a dog's paw and hock. Dogs with at least one copy of the **T** allele have about a 50% chance of having hind dewclaws. Note that other (currently unknown to science) mutations can also cause hind dewclaws, so some **CC** or **TC** dogs will have hind dewclaws. Likely normal-length tail (CC)

Likely to have hind dew claws (CT)

RESULT

embk.me/magneto2

RESULT

TRAITS: OTHER BODY FEATURES (CONTINUED)

TRAIT

Blue Eye Color (ALX4) LINKAGE

Embark researchers discovered this large duplication associated with blue eyes in Arctic breeds like Siberian Husky as well as tri-colored (non-merle) Australian Shepherds. Dogs with at least one copy of the duplication (**Dup**) are more likely to have at least one blue eye. Some dogs with the duplication may have only one blue eye (complete heterochromia) or may not have blue eyes at all; nevertheless, they can still pass the duplication and the trait to their offspring. **NN** dogs do not carry this duplication, but may have blue eyes due to other factors, such as merle. Please note that this is a linkage test, so it may not be as predictive as direct tests of the mutation in some lines.

Less likely to have blue eyes (NN)

Back Muscling & Bulk, Large Breed (ACSL4)

The **T** allele is associated with heavy muscling along the back and trunk in characteristically "bulky" largebreed dogs including the Saint Bernard, Bernese Mountain Dog, Greater Swiss Mountain Dog, and Rottweiler. The "bulky" **T** allele is absent from leaner shaped large breed dogs like the Great Dane, Irish Wolfhound, and Scottish Deerhound, which are fixed for the ancestral **C** allele. Note that this mutation does not seem to affect muscling in small or even mid-sized dog breeds with notable back muscling, including the American Staffordshire Terrier, Boston Terrier, and the English Bulldog.

Likely normal muscling (CC)

DNA Test Report	Test Date: July 14th, 2019	embk.me/magneto2
TRAITS: BODY SIZE		
TRAIT		RESULT
Body Size (IGF1)		Smaller (II)
The I allele is associated with smalle	r body size.	
Body Size (IGFR1)		Intermediate (GA)
The A allele is associated with smalle	er body size.	
Body Size (STC2)		Intermediate (TA)
The A allele is associated with smalle	er body size.	
Body Size (GHR - E191K)		Larger (GG)
The A allele is associated with smalle	er body size.	
Body Size (GHR - P177L)		Larger (CC)
The T allele is associated with smalle	er body size.	

Test Date: July 14th, 2019

embark

embk.me/magneto2

TRAITS: PERFORMANCE

TRAIT

Altitude Adaptation (EPAS1)

Normal altitude This mutation causes dogs to be especially tolerant of low oxygen environments (hypoxia), such as those tolerance (GG) found at high elevations. Dogs with at least one A allele are less susceptible to "altitude sickness." This mutation was originally identified in breeds from high altitude areas such as the Tibetan Mastiff.

Appetite (POMC) LINKAGE

This mutation in the POMC gene is found primarily in Labrador and Flat Coated Retrievers. Compared to dogs with no copies of the mutation (NN), dogs with one (ND) or two (DD) copies of the mutation are more Normal food likely to have high food motivation, which can cause them to eat excessively, have higher body fat motivation (NN) percentage, and be more prone to obesity. Read more about the genetics of POMC, and learn how you can contribute to research, in our blog post (https://embarkvet.com/resources/blog/pomc-dogs/). We measure this result using a linkage test.

DNA Test Report

Test Date: July 14th, 2019

embk.me/magneto2

CLINICAL TOOLS

These clinical genetic tools can inform clinical decisions and diagnoses. These tools do not predict increased risk for disease.

Alanine Aminotransferase Activity (GPT)

Magneto's baseline ALT level may be Low Normal

Why is this important to your vet?

Magneto has one copy of a variant associated with reduced ALT activity as measured on veterinary blood chemistry panels. Please inform your veterinarian that Magneto has this genotype, as ALT is often used as an indicator of liver health and Magneto is likely to have a lower than average resting ALT activity. As such, an increase in Magneto's ALT activity could be evidence of liver damage, even if it is within normal limits by standard ALT reference ranges.

What is Alanine Aminotransferase Activity?

Alanine aminotransferase (ALT) is a clinical tool that can be used by veterinarians to better monitor liver health. This result is not associated with liver disease. ALT is one of several values veterinarians measure on routine blood work to evaluate the liver. It is a naturally occurring enzyme located in liver cells that helps break down protein. When the liver is damaged or inflamed, ALT is released into the bloodstream.

How vets diagnose this condition

Genetic testing is the only way to provide your veterinarian with this clinical tool.

How this condition is treated

Veterinarians may recommend blood work to establish a baseline ALT value for healthy dogs with one or two copies of this variant.

Test Date: July 14th, 2019

embk.me/magneto2

HEALTH REPORT

How to interpret Magneto's genetic health results:

If Magneto inherited any of the variants that we tested, they will be listed at the top of the Health Report section, along with a description of how to interpret this result. We also include all of the variants that we tested Magneto for that we did not detect the risk variant for.

A genetic test is not a diagnosis

This genetic test does not diagnose a disease. Please talk to your vet about your dog's genetic results, or if you think that your pet may have a health condition or disease.

176 variants not detected

Magneto is at increased risk for one genetic healt	h condition.
Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD	
Breed-Relevant Genetic Conditions	6 variants not detected

Additional Genetic Conditions

DNA Test Report

Test Date: July 14th, 2019

embk.me/magneto2

HEALTH REPORT

Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD (FGF4 retrogene - CFA12)

Magneto inherited one copy of the variant we tested

Magneto is at increased risk for Type I IVDD

How to interpret this result

Magneto has one copy of an FGF4 retrogene on chromosome 12. In some breeds such as Beagles, Cocker Spaniels, and Dachshunds (among others) this variant is found in nearly all dogs. While those breeds are known to have an elevated risk of IVDD, many dogs in those breeds never develop IVDD. For mixed breed dogs and purebreds of other breeds where this variant is not as common, risk for Type I IVDD is greater for individuals with this variant than for similar dogs.

What is Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD?

Type I Intervertebral Disc Disease (IVDD) is a back/spine issue that refers to a health condition affecting the discs that act as cushions between vertebrae. With Type I IVDD, affected dogs can have a disc event where it ruptures or herniates towards the spinal cord. This pressure on the spinal cord causes neurologic signs which can range from a wobbly gait to impairment of movement. Chondrodystrophy (CDDY) refers to the relative proportion between a dog's legs and body, wherein the legs are shorter and the body longer. There are multiple different variants that can cause a markedly chondrodystrophic appearance as observed in Dachshunds and Corgis. However, this particular variant is the only one known to also increase the risk for IVDD.

When signs & symptoms develop in affected dogs

Signs of CDDY are recognized in puppies as it affects body shape. IVDD is usually first recognized in adult dogs, with breed specific differences in age of onset.

Signs & symptoms

Research indicates that dogs with one or two copies of this variant have a similar risk of developing IVDD. However, there are some breeds (e.g. Beagles and Cocker Spaniels, among others) where this variant has been passed down to nearly all dogs of the breed and most do not show overt clinical signs of the disorder. This suggests that there are other genetic and environmental factors (such as weight, mobility, and family history) that contribute to an individual dog's risk of developing clinical IVDD. Signs of IVDD include neck or back pain, a change in your dog's walking pattern (including dragging of the hind limbs), and paralysis. These signs can be mild to severe, and if your dog starts exhibiting these signs, you should schedule an appointment with your veterinarian for a diagnosis.

How vets diagnose this condition

For CDDY, dogs with one copy of this variant may have mild proportional differences in their leg length. Dogs with two copies of this variant will often have visually longer bodies and shorter legs. For IVDD, a neurological exam will be performed on any dog showing suspicious signs. Based on the result of this exam, radiographs to detect the presence of calcified discs or advanced imaging (MRI/CT) to detect a disc rupture may be recommended.

How this condition is treated

IVDD is treated differently based on the severity of the disease. Mild cases often respond to medical management which includes cage rest and pain management, while severe cases are often treated with surgical intervention. Both conservative and surgical treatment should be followed up with rehabilitation and physical therapy.

Test Date: July 14th, 2019

embk.me/magneto2

BREED-RELEVANT CONDITIONS TESTED

Magneto did not have the variants that we tested for, that are relevant to his breeds:

- 🔀 Von Willebrand Disease Type I, Type I vWD (VWF)
- Progressive Retinal Atrophy, prcd (PRCD Exon 1)
- C GM2 Gangliosidosis (HEXB, Poodle Variant)
- Degenerative Myelopathy, DM (SOD1A)
- Neonatal Encephalopathy with Seizures, NEWS (ATF2)
- 😴 Osteochondrodysplasia, Skeletal Dwarfism (SLC13A1, Poodle Variant)

Test Date: July 14th, 2019

embk.me/magneto2

ADDITIONAL CONDITIONS TESTED

Magneto did not have the variants that we tested for, in the following conditions that the potential effect on dogs with Magneto's breeds may not yet be known.

- 🛃 MDR1 Drug Sensitivity (ABCB1)
- P2Y12 Receptor Platelet Disorder (P2Y12)
- 🔀 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Terrier Variant)
- 🌄 Factor IX Deficiency, Hemophilia B (F9 Exon 7, Rhodesian Ridgeback Variant)
- Factor VII Deficiency (F7 Exon 5)
- 🔀 Factor VIII Deficiency, Hemophilia A (F8 Exon 10, Boxer Variant)
- 🌄 Factor VIII Deficiency, Hemophilia A (F8 Exon 11, German Shepherd Variant 1)
- Sactor VIII Deficiency, Hemophilia A (F8 Exon 1, German Shepherd Variant 2)
- Thrombopathia (RASGRP1 Exon 5, Basset Hound Variant)
- Thrombopathia (RASGRP1 Exon 8, Landseer Variant)
- 🌄 Thrombopathia (RASGRP1 Exon 5, American Eskimo Dog Variant)
- 🚫 Von Willebrand Disease Type III, Type III vWD (VWF Exon 4, Terrier Variant)
- 😴 Von Willebrand Disease Type III, Type III vWD (VWF Exon 7, Shetland Sheepdog Variant)
- Von Willebrand Disease Type II, Type II vWD (VWF, Pointer Variant)
- 😴 Canine Leukocyte Adhesion Deficiency Type I, CLAD I (ITGB2, Setter Variant)
- 😴 Canine Leukocyte Adhesion Deficiency Type III, CLAD III (FERMT3, German Shepherd Variant)
- Congenital Macrothrombocytopenia (TUBB1 Exon 1, Cairn and Norfolk Terrier Variant)
- Canine Elliptocytosis (SPTB Exon 30)
- 😴 Glanzmann's Thrombasthenia Type I (ITGA2B Exon 12, Otterhound Variant)
- May-Hegglin Anomaly (MYH9)
- Prekallikrein Deficiency (KLKB1 Exon 8)
- 💎 Pyruvate Kinase Deficiency (PKLR Exon 5, Basenji Variant)
- 😴 Pyruvate Kinase Deficiency (PKLR Exon 7, Labrador Retriever Variant)

DNA Test Report

Test Date: July 14th, 2019

embk.me/magneto2

ADDITIONAL CONDITIONS TESTED

- Pyruvate Kinase Deficiency (PKLR Exon 10, Terrier Variant)
- Trapped Neutrophil Syndrome, TNS (VPS13B)
- 🌄 Ligneous Membranitis, LM (PLG)
- 🔇 Congenital Hypothyroidism (TPO, Tenterfield Terrier Variant)
- Complement 3 Deficiency, C3 Deficiency (C3)
- Severe Combined Immunodeficiency, SCID (PRKDC, Terrier Variant)
- Severe Combined Immunodeficiency, SCID (RAG1, Wetterhoun Variant)
- 😴 X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG Exon 1, Basset Hound Variant)
- 😴 X-linked Severe Combined Immunodeficiency, X-SCID (IL2RG, Corgi Variant)
- 😴 Progressive Retinal Atrophy, rcd1 (PDE6B Exon 21, Irish Setter Variant)
- Progressive Retinal Atrophy, rcd3 (PDE6A)
- Progressive Retinal Atrophy, CNGA (CNGA1 Exon 9)
- Progressive Retinal Atrophy, PRA1 (CNGB1)
- Progressive Retinal Atrophy (SAG)
- 😴 Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1 (SLC4A3)
- 😴 Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2 (TTC8)
- 😴 Progressive Retinal Atrophy, crd1 (PDE6B, American Staffordshire Terrier Variant)
- Progressive Retinal Atrophy, crd2 (IQCB1)
- Progressive Retinal Atrophy, crd4/cord1 (RPGRIP1)
- X-Linked Progressive Retinal Atrophy 1, XL-PRA1 (RPGR)
- Progressive Retinal Atrophy, PRA3 (FAM161A)
- 😋 Collie Eye Anomaly, Choroidal Hypoplasia, CEA (NHEJ1)
- 📀 Day Blindness, Cone Degeneration, Achromatopsia (CNGB3 Exon 6, German Shorthaired Pointer Variant)
- 🔇 Achromatopsia (CNGA3 Exon 7, German Shepherd Variant)
- 🔇 Achromatopsia (CNGA3 Exon 7, Labrador Retriever Variant)

DNA Test Report

Test Date: July 14th, 2019

embk.me/magneto2

ADDITIONAL CONDITIONS TESTED

- Autosomal Dominant Progressive Retinal Atrophy (RHO)
- Canine Multifocal Retinopathy, cmr1 (BEST1 Exon 2)
- 😴 Canine Multifocal Retinopathy, cmr2 (BEST1 Exon 5, Coton de Tulear Variant)
- 😴 Canine Multifocal Retinopathy, cmr3 (BEST1 Exon 10 Deletion, Finnish and Swedish Lapphund, Lapponian Herder Variant)
- 😴 Primary Open Angle Glaucoma (ADAMTS10 Exon 9, Norwegian Elkhound Variant)
- 💎 Primary Open Angle Glaucoma (ADAMTS10 Exon 17, Beagle Variant)
- 🜄 Primary Open Angle Glaucoma (ADAMTS17 Exon 11, Basset Fauve de Bretagne Variant)
- 😴 Primary Open Angle Glaucoma and Primary Lens Luxation (ADAMTS17 Exon 2, Chinese Shar-Pei Variant)
- 😴 Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts (HSF4 Exon 9, Australian Shepherd Variant)
- 📀 Primary Lens Luxation (ADAMTS17)
- 🔀 Congenital Stationary Night Blindness (RPE65, Briard Variant)
- 🔀 Macular Corneal Dystrophy, MCD (CHST6)
- 2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis (APRT)
- 💽 Cystinuria Type I-A (SLC3A1, Newfoundland Variant)
- Cystinuria Type II-A (SLC3A1, Australian Cattle Dog Variant)
- 😴 Cystinuria Type II-B (SLC7A9, Miniature Pinscher Variant)
- 🔇 Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU (SLC2A9)
- Polycystic Kidney Disease, PKD (PKD1)
- 🔿 Primary Hyperoxaluria (AGXT)
- 💽 Protein Losing Nephropathy, PLN (NPHS1)
- 🚫 X-Linked Hereditary Nephropathy, XLHN (COL4A5 Exon 35, Samoyed Variant 2)
- 😴 Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN (COL4A4 Exon 3, Cocker Spaniel Variant)
- Primary Ciliary Dyskinesia, PCD (CCDC39 Exon 3, Old English Sheepdog Variant)
- Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID (FAM83H Exon 5)
- 🌄 X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia, XHED (EDA Intron 8)

ADDITIONAL CONDITIONS TESTED

- 🔀 Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND (FLCN Exon 7)
- Canine Fucosidosis (FUCA1)
- 🛃 Glycogen Storage Disease Type II, Pompe's Disease, GSD II (GAA, Finnish and Swedish Lapphund, Lapponian Herder Variant)
- 😴 Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA (G6PC, Maltese Variant)
- 🛃 Glycogen Storage Disease Type IIIA, GSD IIIA (AGL, Curly Coated Retriever Variant)
- 🔇 Mucopolysaccharidosis Type I, MPS I (IDUA, Plott Hound Variant)
- 🛃 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, Dachshund Variant)
- 😴 Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA (SGSH Exon 6, New Zealand Huntaway Variant)
- 😴 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 5, Terrier Brasileiro Variant)
- 🛃 Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII (GUSB Exon 3, German Shepherd Variant)
- Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Whippet and English Springer Spaniel Variant)
- 🛃 Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency (PFKM, Wachtelhund Variant)
- Lagotto Storage Disease (ATG4D)
- 🚫 Neuronal Ceroid Lipofuscinosis 1, NCL 1 (PPT1 Exon 8, Dachshund Variant 1)
- Neuronal Ceroid Lipofuscinosis 2, NCL 2 (TPP1 Exon 4, Dachshund Variant 2)
- 😴 Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A (ARSG Exon 2, American Staffordshire Terrier Variant)
- 💽 Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 SNP, Border Collie Variant)
- 🚫 Neuronal Ceroid Lipofuscinosis 6, NCL 6 (CLN6 Exon 7, Australian Shepherd Variant)
- 💽 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8 Exon 2, English Setter Variant)
- 💽 Neuronal Ceroid Lipofuscinosis 7, NCL 7 (MFSD8, Chihuahua and Chinese Crested Variant)
- 💽 Neuronal Ceroid Lipofuscinosis 8, NCL 8 (CLN8, Australian Shepherd Variant)
- 💽 Neuronal Ceroid Lipofuscinosis 10, NCL 10 (CTSD Exon 5, American Bulldog Variant)
- 😴 Neuronal Ceroid Lipofuscinosis 5, NCL 5 (CLN5 Exon 4 Deletion, Golden Retriever Variant)
- 🔀 Adult-Onset Neuronal Ceroid Lipofuscinosis, NCL A, NCL 12 (ATP13A2, Tibetan Terrier Variant)
- 🔀 GM1 Gangliosidosis (GLB1 Exon 15, Shiba Inu Variant)

Test Date: July 14th, 2019

embk.me/magneto2

ADDITIONAL CONDITIONS TESTED

- 🜄 GM1 Gangliosidosis (GLB1 Exon 15, Alaskan Husky Variant)
- 🔀 GM1 Gangliosidosis (GLB1 Exon 2, Portuguese Water Dog Variant)
- 🔀 GM2 Gangliosidosis (HEXA, Japanese Chin Variant)
- 😴 Globoid Cell Leukodystrophy, Krabbe disease (GALC Exon 5, Terrier Variant)
- 😴 Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia (ENAM Deletion, Italian Greyhound Variant)
- Persistent Mullerian Duct Syndrome, PMDS (AMHR2)
- 💽 Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS (MYO7A)
- 😴 Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever (MTBP)
- 🔇 Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy (SLC19A3)
- 🔀 Alexander Disease (GFAP)
- Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD (SPTBN2, Beagle Variant)
- 😴 Cerebellar Ataxia, Progressive Early-Onset Cerebellar Ataxia (SEL1L, Finnish Hound Variant)
- 💽 Cerebellar Hypoplasia (VLDLR, Eurasier Variant)
- 🔀 Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA (CAPN1)
- 😴 Spinocerebellar Ataxia with Myokymia and/or Seizures (KCNJ10)
- 🌄 Hereditary Ataxia, Cerebellar Degeneration (RAB24, Old English Sheepdog and Gordon Setter Variant)
- 😴 Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy (LGI2)
- 💽 Fetal-Onset Neonatal Neuroaxonal Dystrophy (MFN2, Giant Schnauzer Variant)
- 🔇 Hypomyelination and Tremors (FNIP2, Weimaraner Variant)
- 😴 Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome (PLP1, English Springer Spaniel Variant)
- 🔇 Neuroaxonal Dystrophy, NAD (TECPR2, Spanish Water Dog Variant)
- C L-2-Hydroxyglutaricaciduria, L2HGA (L2HGDH, Staffordshire Bull Terrier Variant)
- Polyneuropathy (NDRG1 Deletion, Greyhound Variant)
- 💽 Alaskan Malamute Polyneuropathy, AMPN (NDRG1 SNP)
- 🚫 Narcolepsy (HCRTR2 Intron 6, Labrador Retriever Variant)

Test Date: July 14th, 2019

embk.me/magneto2

ADDITIONAL CONDITIONS TESTED

- 💽 Narcolepsy (HCRTR2 Exon 1, Dachshund Variant)
- 💎 Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 15, Kerry Blue Terrier Variant)
- 🌄 Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD (SERAC1 Exon 4, Chinese Crested Variant)
- Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV
 (RAB3GAP1, Rottweiler Variant)
- 🌄 Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS (GDNF-AS, Spaniel and Pointer Variant)
- 🜄 Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 (LPN1, ARHGEF10)
- Juvenile Myoclonic Epilepsy (DIRAS1)
- 😴 Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2 (GJA9)
- 😴 Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome (KCNJ10)
- Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 (ATP1B2)
- C Dilated Cardiomyopathy, DCM1 (PDK4, Doberman Pinscher Variant 1)
- Dilated Cardiomyopathy, DCM2 (TTN, Doberman Pinscher Variant 2)
- Long QT Syndrome (KCNQ1)
- 🚫 Muscular Dystrophy (DMD, Cavalier King Charles Spaniel Variant 1)
- Muscular Dystrophy (DMD, Golden Retriever Variant)
- C Limb Girdle Muscular Dystrophy (SGCD, Boston Terrier Variant)
- Centronuclear Myopathy, CNM (PTPLA)
- Exercise-Induced Collapse, EIC (DNM1)
- Inherited Myopathy of Great Danes (BIN1)
- 💽 Myostatin Deficiency, Bully Whippet Syndrome (MSTN)
- 🔀 Myotonia Congenita (CLCN1 Exon 7, Miniature Schnauzer Variant)
- 💽 Myotonia Congenita (CLCN1 Exon 23, Australian Cattle Dog Variant)
- 😴 Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM (MTM1, Labrador Retriever Variant)
- 🌄 Hypocatalasia, Acatalasemia (CAT)
- Ϛ Pyruvate Dehydrogenase Deficiency (PDP1, Spaniel Variant)

embk.me/magneto2

ADDITIONAL CONDITIONS TESTED

- Malignant Hyperthermia (RYR1)
- 🜄 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 53, Border Collie Variant)
- 🌄 Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption (CUBN Exon 8, Beagle Variant)
- Congenital Myasthenic Syndrome, CMS (CHAT, Old Danish Pointing Dog Variant)
- 🜄 Congenital Myasthenic Syndrome, CMS (COLQ, Labrador Retriever Variant)
- Episodic Falling Syndrome (BCAN)
- Paroxysmal Dyskinesia, PxD (PIGN)
- Dystrophic Epidermolysis Bullosa (COL7A1, Golden Retriever Variant)
- C Ectodermal Dysplasia, Skin Fragility Syndrome (PKP1, Chesapeake Bay Retriever Variant)
- 💽 Ichthyosis, Epidermolytic Hyperkeratosis (KRT10, Terrier Variant)
- C Ichthyosis, ICH1 (PNPLA1, Golden Retriever Variant)
- 🔀 Ichthyosis (SLC27A4, Great Dane Variant)
- 🛃 Ichthyosis (NIPAL4, American Bulldog Variant)
- 🌄 Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita (KRT16, Dogue de Bordeaux Variant)
- K Hereditary Footpad Hyperkeratosis (FAM83G, Terrier and Kromfohrlander Variant)
- 💽 Hereditary Nasal Parakeratosis, HNPK (SUV39H2)
- 🚫 Musladin-Lueke Syndrome, MLS (ADAMTSL2)
- 💽 Oculocutaneous Albinism, OCA (SLC45A2, Pekingese Variant)
- 😴 Cleft Lip and/or Cleft Palate (ADAMTS20, Nova Scotia Duck Tolling Retriever Variant)
- 🔀 Hereditary Vitamin D-Resistant Rickets (VDR)
- 🔇 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A2, Beagle Variant)
- 😴 Osteogenesis Imperfecta, Brittle Bone Disease (SERPINH1, Dachshund Variant)
- 😴 Osteogenesis Imperfecta, Brittle Bone Disease (COL1A1, Golden Retriever Variant)
- 🚫 Skeletal Dysplasia 2, SD2 (COL11A2, Labrador Retriever Variant)
- 💽 Craniomandibular Osteopathy, CMO (SLC37A2)

Test Date: July 14th, 2019

embk.me/magneto2

ADDITIONAL CONDITIONS TESTED

Chondrodystrophy (ITGA10, Norwegian Elkhound and Karelian Bear Dog Variant)

embk.me/magneto2

INBREEDING AND DIVERSITY

CATEGORY

Coefficient Of Inbreeding

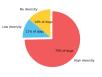
Our genetic COI measures the proportion of your dog's genome where the genes on the mother's side are identical by descent to those on the father's side.

MHC Class II - DLA DRB1

A Dog Leukocyte Antigen (DLA) gene, DRB1 encodes a major histocompatibility complex (MHC) protein involved in the immune response. Some studies have shown associations between certain DRB1 haplotypes and autoimmune diseases such as Addison's disease (hypoadrenocorticism) in certain dog breeds, but these findings have yet to be scientifically validated.

MHC Class II - DLA DQA1 and DQB1

DQA1 and DQB1 are two tightly linked DLA genes that code for MHC proteins involved in the immune response. A number of studies have shown correlations of DQA-DQB1 haplotypes and certain autoimmune diseases; however, these have not yet been scientifically validated.


RESULT

Your Dody's COL 2%

High Diversity

2%

How common is this amount of diversity in mixed breed dogs:

High Diversity

How common is this amount of diversity in mixed breed dogs:

